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Abstract— We propose an analysis of surgical videos
that is based on a novel recurrent convolutional network
(SV-RCNet), specifically for automatic workflow recognition
from surgical videos online, which is a key component
for developing the context-aware computer-assisted inter-
vention systems. Different from previous methods which
harness visual and temporal information separately, the pro-
posed SV-RCNet seamlessly integrates a convolutional
neural network (CNN) and a recurrent neural network (RNN)
to form a novel recurrent convolutional architecture in order
to take full advantages of the complementary information of
visual and temporal features learned from surgical videos.
We effectively train the SV-RCNet in an end-to-end manner
so that the visual representations and sequential dynamics
can be jointly optimized in the learning process. In order
to produce more discriminative spatio-temporal features,
we exploit a deep residual network (ResNet) and a long short
term memory (LSTM) network, to extract visual features
and temporal dependencies, respectively, and integrate
them into the SV-RCNet. Moreover, based on the phase
transition-sensitive predictions from the SV-RCNet, we pro-
pose a simple yet effective inference scheme, namely the
prior knowledge inference (PKI), by leveraging the natural
characteristic of surgical video. Such a strategy further
improves the consistency of results and largely boosts the
recognition performance. Extensive experiments have been
conducted with the MICCAI 2016 Modeling and Monitoring
of Computer Assisted Interventions Workflow Challenge
dataset and Cholec80 dataset to validate SV-RCNet. Our
approach not only achieves superior performance on these
two datasets but also outperforms the state-of-the-art meth-
ods by a significant margin.

Index Terms— Recurrent convolutional network, surgical
workflow recognition, joint learning of spatio-temporal fea-
tures, very deep residual network, long short-term memory.
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I. INTRODUCTION

A IMING to improve the quality of patient treatment,
modern operating rooms are in requirement of context-

aware systems to monitor surgical processes [1], [2], schedule
surgeons [3], [4] and enhance coordination among surgical
teams [5]. Particularly, automatic workflow recognition has
become a key component when developing the context-aware
systems. Furthermore, if the workflow recognition can be intra-
operatively performed online, the real-time recognition can
interpret specific activity currently performing, which helps to
alert surgeons when approaching possible complications [6],
to reduce their operative mistakes and to support decision
making [2], especially for less experienced surgeons.

Diverse attempts have been made to recognize the surgical
workflow or phase, by using various information, including
binary instrument usage signals [7], RFID tags [8], data
acquired via sensors on tool tracking devices [9], and sur-
gical robots [10]. However, collecting these signals mostly
requires tedious manual annotation or extra equipment instal-
lation, which would introduce extra workload in the surgery
process [2]. Therefore, recent researches have explored to
identify the workflow purely based on video data routinely
collected during the surgical process [2], [6], [11]. Apart from
the merit of avoiding auxiliary devices, automated workflow
recognition from surgical videos is also useful for surgeon
skill evaluation [12] and documentation of the surgical video
databases, given that the current practice of doing manual
indexing is tedious and time-consuming [11].

However, purely using video scenes to automatically
recognize surgical phase is quite challenging. First, there
is limited inter-class variance between different phases
while significant intra-class variance within the same phase
(see Fig. 1 (a) and (b)). Second, severe scene blur occurs due
to the camera motion and the gas produced during the surgery,
which increases the recognition difficulty (see Fig. 1 (c)).
Third, in the complex surgical procedures, the camera may
not always focus on the surgical scenes, introducing additional
noise and artifacts into the recorded videos (see Fig. 1 (d)).

To meet these challenges, lots of studies have been dedicated
to extracting discriminative visual features from video frames
and modeling the temporal dependencies among frames to
improve the recognition accuracy. In terms of visual feature
extraction, early studies utilized hand-crafted features, such
as intensity and gradient [12], shape, color and texture-based
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Fig. 1. Illustration of various challenges for automated workflow
recognition from surgical videos. The text on the top-left corner of each
image indicates which phase it belongs to. With each row, from top to
bottom, we present the challenges of (a) limited inter-phase variance,
(b) significant intra-phase variance, (c) scene blur due to camera motion
and gas, and (d) artifacts.

descriptors [13]. However, it would be insufficient for these
low-level features to represent the complicated surgical visual
appearance [14]. With the revolution of deep learning and
its successful applications on medical imaging [15]–[17],
recent methods proposed to enhance the feature discrimina-
tion capability by employing convolutional neural networks
(CNNs) [11]. Meanwhile, given that the surgical video is
actually a form of sequential data, leveraging the temporal
information and effectively capturing the sequential dynamics
are crucial for accurate workflow recognition. A number of
approaches have also been proposed in this direction by
utilizing dynamic time warping [7], [12], conditional ran-
dom field [18], and derivations of hidden markov model
(HMM) [19], [20]. Specifically, the state-of-the-art perfor-
mance of surgical workflow recognition was achieved by
Twinanda et al. [11], who constructed a 9-layer CNN for
visual features and designed a two-level hierarchical HMM
for modeling temporal information.

However, it is still challenging for existing methods to fully
solve this problem and there are great potentials to improve the
automatic recognition performance for the following reasons.

First, the previously used visual features, either hand-
crafted or shallow CNN based, are still far from sufficient to
represent the complicated visual characteristics of the frames
in surgical videos. In addition, when exploiting the temporal
information, most traditional methods rely on linear statistical
models with pre-defined dependences, which are incapable of
precisely representing the crucial yet subtle motions in the
surgical videos, especially for frame series with strong non-
linear dynamics. Second, and more importantly, most existing
methods harness visual and temporal information separately,
i.e. first using visual features with classifiers to predict each
frame, and then using temporal dependencies to refine the
results. In this way, visual features are unable to play a role
in the temporal model and therefore such a scheme hardly
benefits from the spatio-temporal information. Third, due to
the above-mentioned two reasons, we analyze and find that it
would be difficult for previous methods to sensitively identify
and locate the transition frames (i.e., when jumping from one
phase to another), while recognizing which is very important to
achieve accurate and consistent workflow recognition results.

In this paper, we propose to process surgical videos with a
novel recurrent convolutional network, termed as SV-RCNet,
to comprehensively address the above challenges for accurate
surgical workflow recognition. Our SV-RCNet conducts the
workflow recognition in online mode, and employs state-of-
the-art deep learning networks to extract visual features and
model the temporal dependencies. Specifically, we exploit
the very deep residual network, the ResNet [21], to extract
highly discriminative visual features from the video frames.
The importance of network depth for extracting discrimi-
native features has been manifested by both computational
theories [22], [23] and practical applications [24]–[26]. We
further propose to learn the temporal dependencies by utilizing
the long short term memory (LSTM) network. It is powerful
in handling sequential data by non-linearly modeling long-
range temporal dependencies [27], and has been successfully
applied to many challenging tasks [28]–[30]. More impor-
tantly, SV-RCNet seamlessly integrates the ResNet and the
LSTM network, so that we can jointly train them in an end-
to-end manner to generate high-level features that encode
both spatio (visual) and temporal information. Particularly,
the spatio-temporal features learned by SV-RCNet are sensitive
to motions in surgical videos and can precisely identify the
phase transition frames. Considering that the results produced
from SV-RCNet are transition-sensitive and the surgical videos
are well-structured, we design a simple yet effective scheme
called prior knowledge inference (PKI) to refine the SV-RCNet
output. Our PKI strategy is tailored to make use of the natural
characteristics of surgical videos and can greatly improve the
recognition accuracy.

Our main contributions are summarized as follows:
1) We present a novel framework, i.e., SV-RCNet, to accu-

rately recognize the workflow from surgical videos.
Compared with previous methods that utilize visual and
temporal information independently, the SV-RCNet can
learn high-level representations that encode both visual
features and temporal dependencies in an end-to-end
architecture for improving the recognition accuracy.
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Fig. 2. (a) An overview of the proposed SV-RCNet for workflow recognition from surgical videos. The LSTM networks are instantiated by diagrams
to indicate how temporal information is modeled. (b) The architecture of the ResNet to extract visual features from video frames. (c) Illustration of
the structure within the residual block.

2) To enhance the discrimination capability of SV-RCNet,
we integrate a very deep ResNet and a LSTM network
to learn visual and temporal features, respectively, which
can produce more representative features compared with
traditional methods for surgical video analysis.

3) Based on the high-quality output from the SV-RCNet
and the well-ordered structure of surgical videos,
we develop the PKI scheme to enhance the consistency
of phase predictions and largely improve the recognition
accuracy.

4) We extensively evaluate our proposed method on
MICCAI 2016 Modeling and Monitoring of Com-
puter Assisted Interventions Workflow Challenge. Our
achieved results ranked the first in the challenge, out-
performing other approaches by a significant margin.
In addition, we validate our method on a larger surgi-
cal video dataset, i.e., Cholec80 dataset. Our approach
achieved superior performance over the state-of-the-art
approaches.

The remainder of this paper is organized as follows. We
elaborate our methods in Section II, and report the experimen-
tal results in Section III. We further discuss and analyze our
method in Section IV. Section V finally draws the conclusions.
The source codes and relevant supporting documents can be
found on our project website.1

II. METHODOLOGY

The overview of our proposed SV-RCNet is illustrated in
Fig. 2. We exploit a very deep ResNet to extract discriminative
visual features from each frame and harness a LSTM network

1https://github.com/YuemingJin/SV-RCNet

to model the temporal information of sequential frames. More
importantly, we seamlessly integrate these two components to
form an end-to-end recurrent convolutional network so that the
complementary information of the visual and temporal features
can be sufficiently encoded for more accurate recognition.

A. Highly Discriminative Visual Descriptor Extraction

Extracting highly discriminative visual features from each
frame of the input video is crucial for accurate recognition
and forms the basis of our SV-RCNet. It is quite challenging
to obtain features with powerful discrimination capability
considering the complex surgical environments. Different from
previous solutions which utilized either hand-crafted features
[12], [13] or shallow CNNs [11], we propose to exploit a very
deep ResNet [21] to tackle this crucial while challenging task.

As demonstrated in Fig. 2 (b), our deep residual network is
composed of a set of residual blocks. For the l-th residual
block Bl , we use xl and xl+1 to respectively denote its
input and output representations. Rather than expecting the
stacked layers to fit a complicated underlying transformation
xl+1=Hl(xl), the residual learning aims to ease the optimiza-
tion difficulty by explicitly making these layers approximate
a residual mapping:

xl+1 =Ws xl + Fl(xl; {Wl}), (1)

where Fl is the residual mapping function; {Wl} denotes
the set of weights associated with the residual block Bl ;
the Ws is an identity mapping matrix to linearly match the
input/output dimensions. The detailed construction of each
residual block is shown in Fig. 2 (c). In our implementation,
each residual block contains three convolutional layers, each
followed by a batch normalization (BN) layer and a ReLU
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non-linearity layer. The shortcut identity mapping and
element-wise addition are performed between the last BN layer
and ReLU layer.

After constructing the residual blocks, we can hierarchically
stack the blocks to substantially increase the network depth.
Finally, we construct a 50-layer ResNet with one convolutional
layer and one max pooling layer added at the beginning
of the network as pre-layers to perform downsampling. The
ResNet ends with a 7 × 7 average pooling layer to extract
the global features from each frame and finally outputs a
2048-dimensional feature vector. Interested readers are sug-
gested to refer to [21] for basic principles of residual learning.
Note that the visual descriptors obtained from the ResNet are
directly connected to the LSTM units in our SV-RCNet.

B. Effective Temporal Information Modeling

Due to the sequential nature of video data, temporal infor-
mation provides valuable contextual clues for recognizing
phases in a surgical procedure. For example, single frames
from different phases may take very similar appearance and
hence are difficult to be distinguished purely based on visual
appearance. In contrast, if we can jointly consider its depen-
dencies with adjacent past frames, recognizing the phase of
current frame would be greatly eased.

Instead of employing traditional models, e.g. HMM, we pro-
pose to tap into the temporal dimension of the surgical video
data using the LSTM [31], [32], which has been demonstrated
as a very powerful tool to model temporal concepts. In our
SV-RCNet, we sequentially input the visual descriptors
obtained from the ResNet into the LSTM network and harness
its memory cells to maintain the temporal information of past
frames and then employ the temporal dependencies for better
recognition.

Fig. 2 (a) illustrates the LSTM units used in our
SV-RCNet [33]. The LSTM unit employs three gates, i.e., an
input gate it , a forget gate ft and an output gate ot , to mod-
ulate the interactions between the memory cell ct and its
environment. The input gate it controls how much of new
information c̃t to be stored to the memory cell. The forget gate
ft enables the memory cell to throw away previously stored
information. In this regard, the memory cell ct is a summation
of the incoming information modulated by the input gate it and
previous memory modulated by the forget gate ft . The output
gate ot allows the memory cell to have an effect on the current
hidden state and output or block its influence. At timestep t ,
given input rt (ResNet visual descriptors in our task), hidden
state ht−1, and memory cell ct−1, the LSTM unit updates with
following equations:

it = σ(Wrirt + Whi ht−1 + bi),

ft = σ(Wr f rt +Wh f ht−1 + b f ),

ot = σ(Wrort +Whoht−1 + bo),

c̃t = φ(Wrcrt +Whcht−1 + bc),

ct = ft � ct−1 + it � c̃t ,

ht = ot � φ(ct ), (2)

where the hyperbolic tangent function φ(a)= ea−e−a

ea+e−a squashes
the activations into [−1, 1], and the sigmoid nonlinear function

σ(a)= 1
1+e−a squashes the activations into [0, 1] for generating

the three gates. The set of {W } and {b} respectively denote the
weights and bias terms. The � is element-wise multiplication
involving computations with gates. The memory cell and all
the gates have the same vector size and we initialize h0 as 0.

C. End-to-End Learning of Recurrent
Convolutional Network

In order to take full advantages of the complementary
information of visual and temporal features, superior to exist-
ing methods in which the visual and temporal features are
learned and utilized independently, we propose a novel recur-
rent convolutional network, i.e. the SV-RCNet, by seamlessly
integrating the deep ResNet for visual descriptors extraction
and the LSTM network for temporal dynamics modeling. Note
that the inputs of our SV-RCNet are video clips rather than
single frames so that both visual and temporal information
can be sufficiently utilized and therefore cooperatively enhance
the discrimination capability of our SV-RCNet. We train the
SV-RCNet in an end-to-end manner, where the parameters
of ResNet and LSTM network are jointly optimized towards
accurate surgical workflow recognition.

Most of surgical videos contain quite long sequences since
each video records the entire surgical operation, and workflow
recognition task requires the model to classify the phase for
each frame. With these considerations, instead of inputting the
complete video into the network [32], [34], we propose to cut
the surgical video into short video clips and conduct truncated
backpropagation which alleviates the training difficulty and the
limitation of computational memory. Specifically, to recognize
the surgical phase at timestep t under online mode, we extract
a video clip containing the current frame and a set of its former
frames. The frame sequence in the video clip is denoted by
x = {xt ′, . . . , xt−1, xt } with the length of the sequence as
t − t ′. We denote the ResNet by Uβ with weights β. The
ResNet produces a representative fixed-length visual descriptor
for each single frame x j , represented as r j = Uβ(x j ). The
visual features r = {rt ′, . . . , rt−1, rt } of the video clip are
sequentially fed into the LSTM network, which is denoted
by Vθ with parameters θ . With input rt and previous hidden
state ht−1, the LSTM calculates the output zt and the updated
hidden state ht as zt = ht = Vθ (rt , ht−1). Note that the
parameters θ are shared among every timestep. In this regard,
we can learn the generic temporal dynamics from the video
clip and simultaneously prevent the parameter scale from
growing in proportion to the length of the video clip. Finally,
the prediction probability of frame xt is yielded by forwarding
the output zt to a softmax layer:

p̂t = Sof tmax(Wzzt + bz), (3)

where Wz and bz respectively denote the projection matrix and
bias term, p̂t ∈ R

C is the prediction vector with C denoting
the number of classes (the number of phases in our task).

Let p̂c
t be the c-th element of p̂t , which represents the

predicted probability of frame xt belonging to the class c,
and let lt be the ground truth label of frame xt , the negative
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log-likelihood loss of the frame at time t can be calculated as:

�(xt) = − log p̂c=lt
t (Vθ (Uβ(x))). (4)

During the training, the losses for each single frame in the
video clip x are computed and summed. Let X represent the
training database containing N clip samples, with x ∈ X being
one video clip in the database, the overall joint loss function
can be formulated as:

L(X ; β, θ) = 1

N

∑

x∈X
�(x)

= − 1

N

∑

x∈X

τ=t∑

τ=t ′
log p̂c=lτ

τ (xt ′:τ , ht ′:τ−1; β, θ). (5)

We now look into the training procedure and scrutinize how
our end-to-end trainable SV-RCNet leverages both visual and
temporal features, as well as their interactions, to enhance
the discrimination capability of the network. In the feedfor-
ward procedure, the SV-RCNet sequentially inputs the visual
descriptors of video frames obtained from the ResNet into
the LSTM network and then the LSTM network can model
the temporal dependencies of these frames based on these
visual features. On the other hand, during the backpropagation
procedure, we jointly optimize the ResNet parameters β and
the LSTM parameters θ . In this procedure, the temporal
information can be considered as a guidance when updating
the parameters of the ResNet.

By employing the stochastic gradient descent, the parame-
ters are updated by computing their gradients ∇L(X ; β, θ)
towards the loss. Specifically, denoting the learning rate of
ResNet as λ and the learning rate of LSTM as η, we can
update the weights {β, θ} according to following equations:

θ ← θ − η
∂L
∂θ

, β ← β − λ
∂L
∂β

. (6)

In the backpropagation procedure, the gradients first flow into
the LSTM network Vθ , where the ∂L

∂θ is calculated as follows:

∂L
∂θ
= ∂L

∂zt

∂zt

∂θ
= ∂L

∂zt

∂Vθ (rt , ht−1)

∂θ
. (7)

With the gradients propagating backwards, the ResNet para-
meters β are optimized involving the parameters θ :

∂L
∂β
= ∂L

∂rt

∂rt

∂β
= ∂L

∂zt

∂zt

∂rt

∂rt

∂β
= ∂L

∂zt

∂Vθ (rt , ht−1)

∂rt

∂Uβ(xt)

∂β
. (8)

From the end-to-end training process, we can find that the
proposed SV-RCNet makes parameters β and θ learn both
visual and temporal information while preserving their respec-
tive advantages. That is, the learning of the visual features is
influenced by the captured temporal dynamics, and vice versa.

D. Prior Knowledge Inference for Consistency
Enhancement

By seamlessly integrating temporal information, the features
learned by SV-RCNet enable the predicted results of the
whole surgical video to be smoother. However, a surgical
video usually contains a number of resting frames, frames
with slight motions, and frames with various artifacts in the

Fig. 3. (a) Illustration of the PKI algorithm, presenting the determination
process of the phase prior p̃t (left) and calibration of the SV-RCNet
predictions according to p̂t (right). The outputs from SV-RCNet and the
calibrated results are denoted in blue and purple colors, respectively.
(b) The order information of the phases defined in the M2CAI Workflow
Challenge dataset.

middle of each phase, which are difficult to be accurately
recognized. Fortunately, we find that, different from the natural
videos, most surgical video contents are better structured and
well ordered, because the surgeons are requested to perform
surgeries according to specified workflows as well as instruc-
tions. For example, Fig. 3 (b) summarizes the phase transition
conditions of MICCAI 2016 Modeling and Monitoring of
Computer Assisted Interventions Workflow Challenge dataset,
referred to as M2CAI Workflow Challenge dataset. Specifically,
from P0 to P4, these phases are defined sequentially. From
P4 to P7, there exists no linearly sequential alignment, yet
we can still observe the order information to some extent, for
example, P7 cannot happen before P5 triggers.

With above considerations, one idea should be investigated:
by tracing the workflow and instantaneously infer the phase of
current frame based on predictions of previous frames, whether
we can acquire useful prior knowledge that would greatly help
to calibrate those wrong predictions of phase internal frames
(yellow arrows in Fig. 6). Actually, during the phase transition
period (the beginning of each phase), thanks to the changing
of key actions which bring in richer temporal information,
SV-RCNet can accurately recognize transition sequences in-
between the phases. Examples are shown by the pink arrows
in the Fig. 6. In other words, SV-RCNet is motion sensitive
and can precisely locate the phase transition points. To this
end, we propose a simple yet effective inference scheme
following our SV-RCNet, namely prior knowledge inference,
aiming to enhance the prediction consistency. With the PKI,
we successfully leverage both the well-ordered characteristics
of surgical video and the transition-sensitive outputs from our
SV-RCNet to boost the workflow recognition performance.

The logic of the PKI algorithm is illustrated in Fig. 3, where
we elaborate how PKI works in the transition point from P1 to
P2 as an example and other transition points share the same
principles. Fig. 3 (a) mainly explains how to determine phase
prior p̃t. We denote the network’s phase prediction for a video
frame xt by γt ∈ {0, 1, ..., C}, where C = 7 in the M2CAI
Workflow Challenge dataset. To provide prior knowledge for
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the current frame xt , a prior state collector (denoted by S) is
employed to record the phase predictions of all its past frames:

S = (γ0, γ1, ..., γt−2, γt−1). (9)

With the prior knowledge collected by S, we infer the phase
prior p̃t that the current frame xt is most likely to be. More
specifically, we set accumulators A for each possible phase
to respectively count the number of frames classified into that
phase. The possible phase is P2 in Fig. 3 (a) according to the
defined phase transition in Fig. 3 (b). To ensure the accuracy
and robustness of p̃t, the accumulator A for each possible
phase only increases when sequential frames are continuously
predicted into that phase. Otherwise, A is reset to zero and a
new round of accumulation for that phase is invoked.

Finally, the phase prior p̃t is determined when the accu-
mulation of this phase reaches a threshold δ1. In Fig. 3 (a),
p̃t changes from P1 to P2 only when the A in succession
increases to threshold δ1. Note that at each new timestep,
the PKI just updates S, and the phase prior derived from the
S is obtained through the same strategy.

The obtained phase prior p̃t is then employed to calibrate the
phase prediction of current frame, as illustrated in Fig. 3 (a). If
the xt is classified as neither p̃t nor any one of its potential next
phases defined in the workflow, which means there is a high
possibility that xt is misclassified into another phase by SV-
RCNet due to its indistinguishable current appearance, the PKI
calibrates its prediction into p̃t to maintain the consistency of
prediction results. As shown in the first case of Fig. 3 (a), if the
prediction from SV-RCNet is neither phase 2 nor 3, PKI will
modify it into p̃t = 2. In case that the xt is classified into one
of potential next phases, the PKI will check the confidence of
this prediction to decide whether it should be maintained. If
the prediction probability is lower than a threshold δ2, the PKI
will amend the prediction as p̃t; otherwise, it will keep the
prediction, which are shown in the second and third cases of
Fig. 3 (a). The hyper-parameters in the PKI were determined
using grid search on a validation subset of the datasets.

E. Training Details of SV-RCNet

In order to effectively train the SV-RCNet, considering the
parameter scale of the ResNet is much larger than that of the
LSTM network, we first pre-train the ResNet to learn reli-
able parameters for the following initialization in the overall
network. Leveraging the effective generalization capability of
transfer learning, we initialize our ResNet with weights trained
on the ImageNet dataset [21]. In this stage, we re-sample the
original videos to balance training samples of different phases
and then resize the frames from the original resolution of
1920×1080 into 250×250 to dramatically save memory and
reduce network parameters. The images are further augmented
with 224×224 cropping, mirroring and rotation to expand the
training database.

After obtaining the pre-trained ResNet model, SV-RCNet
which integrates visual and temporal information is trained
in an end-to-end manner to convergence. Note that while we
use the pre-trained parameters of ResNet as its initialization,
the parameters of LSTM network are randomly initialized

TABLE I
PHASES AND THEIR TIME STATISTICS IN CHOLECYSTECTOMY VIDEOS

from Gaussian distribution (μ = 0, σ = 0.01). Hence, the
learning rate of the LSTM is set ten times as that of
the ResNet. For training data preparation, we downsample
the original videos from 25fps to 5fps to enrich temporal
information in the video clips. The resolution of the frames
is also resized as 250 × 250 with the same augmentation
strategies. The length of the clip is set to around 2 seconds
and the sampling stride is set to 3.

Our framework is implemented with C++ and Python based
on the Caffe [35] deep learning library, using a TITAN X
GPU for acceleration. The hyper-parameters in the network
are as follows: momentum=0.9, weight decay=0.005, LSTM
dropout rate=0.5. The learning rates are initially set as 0.0005
for ResNet and 0.005 for LSTM, and are divided by a factor
of 10 every 20k iterations. It took around one day to train
the entire framework into convergence. During inference, our
framework processes one frame within 0.1 second, which
demonstrates its potential to be used for online surgical
workflow recognition.

III. EXPERIMENTS

A. Dataset and Evaluation Metrics

We have extensively validated the proposed SV-RCNet on
the public dataset of MICCAI 2016 Challenge on Modeling
and Monitoring of Computer Assisted Interventions, referred
to as M2CAI Workflow Challenge.2 The dataset consists of
41 videos recording the cholecystectomy procedures. These
videos are acquired at 25fps and each frame has a resolution
of 1920×1080. These videos are segmented into 3−8 phases
by experienced surgeons. The names and time statistics of
phases are listed in Table I. The dataset is divided into training
set (27 videos) and testing set (14 videos). All our surgical
workflow recognition experiments were performed in online
mode. That is, when estimating the frame at time t , we access
no future frame (i.e. frames at time larger than t).

To quantitatively analyze the performance of our method,
we employed four metrics including the jaccard index (JA),
precision (PR), recall (RE) and accuracy (AC). Among them,
the JA and AC were used to evaluate the submissions of
M2CAI Workflow Challenge while PR and RE are also
commonly used metrics to evaluate video-based workflow
recognition methods. The JA, PR and RE are calculated in

2http://camma.u-strasbg.fr/m2cai2016/
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phase-wise, defined as follows:

JA = |GT ∩ P|
|GT ∪ P| , PR = |GT ∩ P|

|P| , RE = |GT ∩ P|
|GT| , (10)

where GT and P respectively denote the ground truth set and
prediction set of one phase. After JA, PR, RE of each phase
are calculated, we average these values over all the phases and
obtain the corresponding measure of the entire video. The AC
is directly calculated at video-level, defined as the percentage
of frames correctly classified into its ground truth phase in the
entire video.

B. Experiments on Depth of Convolutional Network

Extracting discriminative visual features is crucial for our
task. The depth is a key factor in relevance to the performance
of the CNNs. While a deeper network may produce more
representative features, it will consume more computational
resources and increase time complexity both for training and
testing. In this regard, we performed extensive experiments to
evaluate the impact of network depth on the performance of a
convolutional network so that we can find a suitable network
architecture to generate highly discriminative visual features
while maintaining reasonable computation and time cost.

We implemented four convolutional networks with different
depth, i.e. 22-layer GoogLeNet [24], 35-layer, 50-layer, and
101-layer residual networks. The difference among the three
residual networks is the number of residual blocks, with 11, 16
and 33 ResBlocks (see Fig. 2 (c)), respectively. The training
data of these networks were identical and all the networks were
pre-trained based on ImageNet. Note that in these experiments,
we obtained the prediction results directly from the outputs of
these convolutional networks, which were purely based on the
visual information of each frame.

Table II presents the performance of these networks. It is
observed that all the residual networks achieved higher perfor-
mance compared with the 22-layer GoogLeNet, demonstrating
that increasing network depth and exploiting residual learning
can effectively promote the model performance by extracting
highly representative features. The impact of network depth
can also be witnessed by the gradually improved results
obtained from the 35-layer, 50-layer and 101-layer residual
networks. In particular, the major metric JA has achieved 5%
increase from the 35-layer ResNet to the 50-layer ResNet.

Nevertheless, we also notice that the performance growth
rate tends to be slower as the increase of residual network
depth. The accuracy improvement from 50-layer to 101-layer
is far less significant than that from 35-layer to 50-layer. One
of the underlying reasons might be that when a network is
going into the deeper, it will encounter tougher optimization
difficulties. For instance, the parameter scale of 101-layer
ResNet is around twice as large as that of the 50-layer ResNet,
resulting in more risks of overfitting and great increase in
computing resource for training. More importantly, we found
that when integrating the 101-layer ResNet with the LSTM
network, the required computing resource is not affordable
even by an advanced GPU and both training and testing time is
relatively long, leading to the difficulty in practical application.
Therefore, we chose the 50-layer ResNet for our SV-RCNet.

TABLE II
COMPARISON OF PHASE RECOGNITION PERFORMANCE USING

NETWORKS WITH DIFFERENT DEPTH

TABLE III
COMPARISON OF PHASE RECOGNITION RESULTS USING DIFFERENT

TEMPORAL MODELING SCHEMES

C. Experiments on Different Temporal
Modeling Schemes

How to effectively and sufficiently combine the visual and
temporal features lies at the heart of the video-based surgical
workflow recognition task. In the meanwhile, how to leverage
the ordering information of surgical videos to further enhance
the consistency of the results is also important in our task. To
this end, we conducted extensive experiments on the dataset of
M2CAI Workflow Challenge to validate our proposed method
from various perspectives.

1) Effectiveness of the End-to-End Learning: In order to
demonstrate the importance of end-to-end learning to extract
discriminative features for this task, we first conducted a series
of experiments by integrating the 50-layer ResNet with differ-
ent temporal modeling methods, i.e., (1) pure 50-layer ResNet
as a baseline, (2) 50-layer ResNet followed by HMM [36],
(3) 50-layer ResNet followed by LSTM (separately trained),
and (4) our SV-RCNet (end-to-end training). Note that the
video clips input into the last two schemes have the same
length for guaranteeing the experiment fairness.

The experimental results are listed in Table III. All schemes
integrating temporal information achieve much better results
than the pure 50-layer ResNet, demonstrating the importance
of temporal cues for more accurate recognition. Further-
more, focusing on the temporal models, both HMM and
separately trained LSTM learn temporal dependencies in an
independent manner. In contrast, our proposed SV-RCNet
is capable of producing features encoding both visual and
temporal information via end-to-end learning. It is observed
that our SV-RCNet achieves higher results than the above
two methods, demonstrating the effectiveness of the spatio-
temporal joint learning. Specifically, compared with separately
trained ResNet-50+LSTM model, our end-to-end trainable
SV-RCNet improves the JA from 60.8% to 65.4%, and similar
improvements of PR, RE and AC are also observed. Overall,
these results corroborate that through the joint optimization
process, there is implicit interaction between the visual and
temporal features and such an interaction produces beneficial
effects on each other. By taking advantage of complementary
information of visual and temporal information, our SV-RCNet
can learn more discriminative and high-level spatio-temporal
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Fig. 4. Confusion matrices visualized by the color brightness for
(a) ResNet-50, (b) ResNet-50+HMM, (c) ResNet-50+LSTM, and (d) SV-
RCNet. The X and Y-axis represent predicted label and ground truth,
respectively. Element (a, b) of each confusion matrix represents the
empirical probability of predicting class a given that the ground truth is
class b. The probability on diagonal indicates the recall for each phase.

Fig. 5. The phase-level bar chart results of (a) Jaccard and (b) Precision
for ResNet-50, ResNet-50+HMM, ResNet-50+LSTM, and SV-RCNet.

features which can increase the performance of workflow
recognition in surgical videos.

To more comprehensively analyze effectiveness of the end-
to-end learning mechanism, we further visualize the confusion
matrices of the methods in Fig. 4. It is observed that, from
(a) to (d), the performance rises with increasing on recall
and decreasing on misclassification, especially for P7, indi-
cating that while combining temporal information can boost
the recognition accuracy, leveraging spatio-temporal features
jointly learned from the proposed SV-RCNet can further
improve the performance. In addition to using confusion
matrix to indicate RE, we further draw a phase-level bar
chart to illustrate the results of JA and PR in Fig. 5. We
find that across all the 8 phases, the SV-RCNet dominates
other schemes on the JA. For PR, the improvement from other
schemes to SV-RCNet is especially significant (over 5%) for
P0 and P1.

2) Importance of Joint Learning to PKI: Most surgical video
contents are structured and ordered. PKI strategy is in

TABLE IV
COMPARISON OF PHASE RECOGNITION RESULTS WITH PKI

CALIBRATION CONNECTED

particular designed to utilize such a natural characteristic
of surgical video to improve the recognition performance.
However, the efficacy of PKI heavily depends on the predic-
tions provided by former networks according to the rationale
behind the design. To investigate how large the influence can
be, we performed the experiments integrating all the above
methods with PKI. Besides showing the evaluation metrics
in Table IV, the differences of JA (D-Jaccard) between each
method and its counterpart in Table III are also shown to more
clearly explain the impact degree.

First, compared with the counterparts in Table III, all the
methods connected with the PKI strategy can greatly improve
the recognition performance, demonstrating the effectiveness
of the PKI in refining the results. More importantly, among
those four methods, the improvements of JA (D-Jaccard)
gradually increase, and SV-RCNet+PKI exceeds others by a
large margin. Such phenomenon verifies that although PKI
performs well in the calibration, the basis model is also crucial.
The considerable improvement of PKI is greatly attributed
to the good basis provided by SV-RCNet. In addition, see
the results of ResNet-50+LSTM+PKI and SV-RCNet+PKI,
where the only difference is w/o end-to-end learning of net-
works, the latter greatly improves the JA from 70.1% to 78.2%.

Next, we further experimentally investigated the underlying
reason why the combination of SV-RCNet and PKI can achieve
better results. According to the rationale of PKI, two points
decide its efficacy, i.e. transition phase detection sensitivity to
decide phase prior p̃ and probability confidence to calibrate
wrong predictions. In Fig. 6, we illustrate prediction results of
one complete surgical video from ResNet-50 and SV-RCNet.
It can be clearly observed from the red arrows that SV-RCNet
offers smoother and more accurate estimations at transition
frames and provides a better basis for PKI. On the other hand,
frequently jumped and garbled results generated by ResNet-
50 may impede the performance gains of PKI by providing it
incorrect transfer frames. Surgical videos usually contain quite
long sequences, hence predictions at each phase transition
cannot be shown in details by Fig. 6. In this regard, we present
Fig. 7 to have a closer look at the performance during phase
transitions (±500 frames), which more clearly exemplifies the
difference between the two networks. We can find that the SV-
RCNet can produce much better results during the transition
period. Moreover, the high-quality prediction probability from
the SV-RCNet, as the other determinant to PKI effectiveness,
plays an important role in the PKI. We present some typical
prediction results in Fig. 8, where the prediction probabilities
for frame xt using SV-RCNet and ResNet-50 are indicated in
top-right corner. It is observed that integrating the LSTM into
the end-to-end learning framework can greatly enhance the
model’s confidence towards correct predictions.
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Fig. 6. Illustration of prediction results of one complete typical surgical
video from ResNet-50 and SV-RCNet. The phase annotations are shown
in green and predictions are shown in blue. Both of them are connected
by line to show the performance more clearly. More result overlapping
indicates higher prediction accuracy. The pink and yellow arrows rep-
resent continuous accurate predictions during transition period and the
wrong predictions of internal frames from SV-RCNet, respectively. And
red arrows are shown to compare the prediction sensitivities of transition
frames between ResNet-50 and SV-RCNet.

Fig. 7. Color-coded ribbon illustration for phase recognition results
during phase transition time (±��� frames) generated by ResNet-50
(above) and SV-RCNet (bottom), respectively. The texts under each pair
of ribbons successively represent transited phase names of one random
testing video. The transition points are indicated by triangles and dash
lines.

3) Network Interpretation by Visualizing Attention Maps: In
order to provide the insight of what the networks learn and
investigate why joint optimization can improve the perfor-
mance, we further visualize the attention maps (class activation
maps) to interpret the model. Attention maps can exactly
highlight the regions of an image that are important for
discrimination by weighted summing the feature maps of last
convolutional layer, which expose the implicit attention of
networks on an image and intercept the learned information
of networks [37], [38]. Specifically, Fig. 9 visualizes attention
maps of three typical video clips from three different networks,
i.e. (1) ResNet-50, (2) separately trained ResNet-50+LSTM
model, (3) our SV-RCNet. We observe that the attention
maps are quite reasonable and matched with their probability
predictions and predicted classes, which hence can interpret
the results in terms of what networks learn.

For the first video clip, the phase label of this video clip is
P1. Attention maps from ResNet-50 are shown in the second
row, which pay more attention to the fat region distributing
in the bottom of the image. Hence, the predictions for the

ground truth are rather low and these frames are mistakenly
predicted as P0. The third row shows the attention maps from
separately trained ResNet-50+LSTM model, where attentions
of the network gradually transfer from fat region to the gall
bladder and surgical instrument, which are important cues for
workflow recognition. Accordingly, the predictions constantly
increase and the third frame is eventually classified correctly.
The last row displays the attention maps from our SV-RCNet,
which successfully focuses the attentions on the key cues
for all the three frames, demonstrating that, with the joint
spatio-temporal training, the proposed SV-RCNet is capable
of robustly generating more discriminative representations
encoded both visual and temporal information.

Similarly, the attention maps in the second video clip with
P3 phase label also demonstrate the significance of temporal
clue and joint optimization of visual and temporal feature.
See the third frame in this video clip, the important clue for
classification (surgical tool: scissors) nearly disappears from
the frame. Due to solely relying on the single frame infor-
mation, ResNet-50 ignores the tool information and therefore
wrongly classifies it as P2. In contrast, separately trained
ResNet-50+LSTM model can be aware of such information.
However, attention region is still scattered, hence this model
cannot achieve rather high prediction confidence. Attention
region of our SV-RCNet is on the contrary more compact
and relevant to the right phase category, therefore our method
produces higher prediction probability.

The attention maps in the third video clip with P7 phase
label also clearly demonstrate the superiority of the spatio-
temporal feature learning. It can be observed from the first two
rows that ResNet-50 and separately trained ResNet-50+LSTM
model pay attention to the surgical tool in the first two frames
and the background when the tool nearly disappears. Although
their attention regions contain some important visual informa-
tion, since there exists low variance of frame scenes between
P0 and P7 (see Fig. 8), these two models fail to recognize
the frames based on the low-level features. In contrast, our
SV-RCNet not only focuses the surgical tool, but also is aware
of its motion path based on the spatio-temporal features. In
other words, it can distinguish the motion direction of the
tool, i.e. input to or retracted from the patient. Therefore,
these frames with limited inter-phase variance can be correctly
recognized. We also observed similar meaningful attention
maps for other surgical phases during experiments.

From the attention maps, we can intuitively observe what
models learn and focus on, therefore have a better understand-
ing on why our method has better behaviors and performance
than other networks. Our SV-RCNet is able to localize and
concentrate on the discriminative image regions, which helps
to correctly identify the phase with high prediction confidence.

D. Results of the M2CAI Workflow Challenge

Five teams took part in the M2CAI Challenge for work-
flow recognition held in conjunction with MICCAI 2016.
The results are reported in Table V. Among the five teams,
only our team exploited high level features jointly encoded
both visual and temporal information produced by the SV-
RCNet, while all other teams used visual features and temporal
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Fig. 8. Illustration of typical actions in different phases during the cholecystectomy procedure. For each phase, we present three continuous frames
with the stride of 3 (same as our SV-RCNet setting) to capture the temporal information. In each of the eight section, the phase name is indicated
in the top-left corner; the probability predictions towards the ground truth phase of frame xt using SV-RCNet and ResNet-50 are presented in the
top-right corner.

Fig. 9. Visualization of the attention maps of typical video clips indicating the discriminative regions captured by the networks. Three typical
video clips are presented, from top to bottom: the input frames, attention maps from pure ResNet-50 model, attention maps from separately trained
ResNet-50+LSTM model, and attention maps from our SV-RCNet model. In each of the attention maps, the probability prediction towards the ground
truth phase is presented in the top-left corner while the predicted class is indicated in the top-right corner.

information sequentially and separately. Sahu et. al. [39]
utilized an 8-layer AlexNet to extract visual features and
modeled the temporal occurrences of surgical phases by
fitting Gaussian distributions to further refine the prediction
results. Dergachyova et. al. [40] employed hand-crafted visual
features based on color, shape and texture, followed by a
hidden semi-markov model (HsMM) to refine the results.
Twinanda et. al. [41] also made use of an 8-layer AlexNet to
extract visual features, followed by a hierarchical HMM for
refinement, which is same as one method proposed in [11].
Cadène et. al. [36] leveraged a 200-layer ResNet, aiming to
extract more representative visual descriptors. They further
utilized HMM to refine the results. Some of them exploited
different types of post-processing strategy for improving per-
formance in fact. For example, Cadène et. al. [36] utilized
average smoothing on the prediction.

The challenge evaluated the performance of different teams
using the metrics of JA and AC. In addition, the challenge
evaluation regulation relaxed the boundaries of the phases with
a 10-second window, i.e. 250 frames, which means that it
tolerates tiny early or late transitions. In Table V, we can
find that our method achieved the best performance with
both JA of 78.2% and AC of 90.7%. Our results outper-
formed all other approaches by a significant margin, exceeding
the second ranking team by 6.3% on JA and 3.8% on AC,
demonstrating the effectiveness of the proposed methods.
Note that although the second ranking team employed a 200-
layer ResNet, we achieved much better recognition results
than them, corroborating the features encoded both visual
and temporal information generated from our SV-RCNet are
more discriminative and hence powerful than features only
containing visual information in workflow recognition from
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TABLE V
PHASE RECOGNITION RESULTS OF DIFFERENT METHODS

IN 2016 MICCAI M2CAI WORKFLOW CHALLENGE

surgical videos. Nevertheless, the better results of [36] than
other methods further demonstrate that a deeper network may
generate more discriminative visual features.

E. Results of the Cholec80 Dataset
To validate the extensibility of our framework, we further

evaluated our method on the Cholec80 dataset,3 which is
publicly released by the same organizers. Compared with the
dataset of M2CAI Workflow Challenge, the Cholec80 has the
same resolution 1920 × 1080 and is also captured at 25fps,
while it contains more cholecystectomy procedures (80 videos)
and is annotated with 7 defined phases. Specifically, P0:Trocar
Placement and P1:Preparation in Table I are merged into
one phase and others remain. This dataset also contains tool
annotations indicating the presence of 7 tools in an image.

We compared the recognition performance of our proposed
method with the state-of-the-art approach, EndoNet, which uti-
lized 9-layer CNN with two-level hierarchical HMM proposed
by Twinanda et al. in [11]. EndoNet was designed for multiple
tasks, i.e. the phase recognition task and the tool presentation
detection task. Therefore, the network recognizes the workflow
phase by leveraging both the phase annotations and tool
annotations. In addition, we compared the performance with
the method of PhaseNet, which was also proposed in [11]
while solely utilizing the phase annotations. To guarantee
the fairness of comparison, following the same process to
dataset in [11], we split it into two subsets of equal size, with
40 videos as training set and the rest as testing set. Moreover,
we only utilize phase annotations to train our network.

Experimental results are shown in Table VI. Here, we only
list the results on three criteria, i.e. PR, RE and AC, since
the other criterion, JA, is not reported in [11]. It is clearly
observed that our method SV-RCNet outperforms PhaseNet
by a large margin in terms of AC, i.e., 78.8% v.s. 85.3%.
Moreover, although EndoNet includes the additional tool anno-
tation information to do phase recognition, our SV-RCNet
still achieves better performance than such a state-of-the-art
method, improving the AC from 81.7% to 85.3%. Further-
more, our SV-RCNet with PKI strategy can further peak the
AC to 92.4%, PR to 90.6% and RE to 86.2%.

The exceeding performances on both M2CAI Workflow
Challenge dataset and Cholec80 dataset verify the extensibility
of our SV-RCNet architecture. More importantly, compared
with the method in [11], the accuracy improving scopes of
SV-RCNet also increase as the dataset being larger (from
79.5% to 81.7% on M2CAI Workflow Challenge and from
81.7% to 85.3% on Cholec80). The underlying reason of

3http://camma.u-strasbg.fr/datasets

TABLE VI
PHASE RECOGNITION RESULTS OF DIFFERENT

METHODS ON CHOLEC80 DATASET

this phenomenon is that, on the one hand, larger dataset
would enrich the training database to gain more powerful
spatio-temporal features; on the other hand, larger dataset
brings in more complex conditions and challenging issues,
where effectively utilizing the complementary information of
visual and temporal features is quite important to accurately
recognize such challenging cases. The experimental results on
the Cholec80 dataset have demonstrated that our proposed
framework can effectively address phase recognition task in
surgical videos and is general enough to be adapted to various
surgical videos.

IV. DISCUSSION

Automatically recognizing surgical workflow from videos
plays a key role in the development of intelligent context-
aware operating rooms. While it is a platitude that both visual
and temporal information should be harnessed to carry out this
task, how to obtain high quality visual features and temporal
dependencies and take full advantage of their complementary
information do matter to an effective and robust method and
are still open problems in this field. Deep learning techniques,
extracting the high-level features, have successfully addressed
many tasks [42]–[44]. In this paper, we introduce two state-
of-the-art deep learning techniques for this task. We propose
to employ a very deep ResNet to extract discriminative visual
features from frames and exploit a LSTM network to learn the
temporal dependencies among frames to model the motions
and capture the transition frames. Experiments have suffi-
ciently demonstrated effectiveness of these two techniques.

More importantly, we seamlessly integrate the ResNet and
the LSTM network together to form the proposed SV-RCNet
and train it in an end-to-end manner. We propose a novel
joint loss function to guide the training process so that the
visual representations and sequential dynamics can be jointly
optimized in the whole training process. The generated spatio-
temporal features are, in general, more discriminative than
the features produced by traditional CNNs which only take
visual information into account. Moreover, it is worth empha-
sizing that comparing with separately trained CNN-LSTM
architectures [29], [45], [46], our SV-RCNet with utilizing
joint learning mechanism enables networks to take full advan-
tage of complementary of visual and temporal information
and therefore produces more discriminative spatio-temporal
features. Overall, we integrate a deep ResNet and a LSTM
to form an end-to-end network with a joint loss function
and a set of tailored training schemes to solve the challeng-
ing problem of workflow recognition from surgical videos.
The performance improvement demonstrates the advantage of
end-to-end training in the surgical workflow recognition task.
In addition, such an attempt can inspire researchers to develop
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more powerful architectures for the analysis of surgical videos,
as well as other time-series medical signals.

By powerful spatio-temporal modeling capability, the SV-
RCNet can achieve highly-consistent and accurate recognition
results and in particular, precisely identify phase transition
frames, which is not only essential for this task but also
important for many computer-assisted procedures and even
surgical robotics. For example, in case that we can accurately
recognize the transition points between consecutive surgical
phases, we can automatically adjust the configurations and
parameters of a surgical robot to go into next phase. Based
on the high-quality predictions of SV-RCNet and considering
that most of surgical videos have well-ordered and structure
contents, we develop a simple yet effective inference strategy,
i.e. PKI, to manage the recognition process. In principle,
the PKI can be considered as a transition monitor, to deter-
mine the phase prior according to transition points between
consecutive phases detected by SV-RCNet. The phase prior,
in turn, can help correct some wrong predictions existing in
the intermediate of each phase and hence further improve the
recognition performance. It is worthwhile to note that the
success of PKI heavily relies on the high consistency and
accurate predictions of SV-RCNet. From Fig. 6 and Fig. 7,
we can find that it is difficult for traditional CNNs to precisely
locate the transition points in a surgical video due to the lack
of temporal information, while our SV-RCNet can overcome
this shortcoming.

As main concerns of the proposed SV-RCNet, the spatio
and temporal depths of network should be carefully designed
after comprehensively considering network performance, com-
putational resource, training difficulty and so on. For spatio
depth, we find that when integrating a 101-layer ResNet with
a LSTM network, the required computational resource is not
affordable even by an advanced GPU card. In addition, while
the training and testing time of a 101-layer ResNet is around
twice as long as that of a 50-layer ResNet, the performance
gains are quite limited. In this case, we decide to employ
50-layer ResNet to implement the SV-RCNet, achieving sat-
isfactory results while managing the computational resource
and training time in a reasonable range. Similarly, for tem-
poral depth, the computational resource and training time
are the main constraints to do the exploration of clip length
increase. Multi-GPUs and other distributed architectures can
enlarge the memory capacity and address the main limita-
tion about computational memory. Moreover, by leveraging
the distributed architectures, the exploration about utilizing
convolutional LSTM as temporal model can be implemented.
Convolutional LSTM can preserve spatial structures as well as
model temporal information [30]. However, it consumes large
computational memory compared with the conventional LSTM
used in our current SV-RCNet, and would be more difficult
to train jointly with a 50-layer deep ResNet. In the future,
we may first modify our framework into multi-GPU version
and then practically find effective training strategies, but we
should carefully considered if the computational setting of
distributed architectures is suitable for operating rooms before
deployment.

The proposed automatic surgical workflow recognition
method has the great significance in clinical practice. It can be

used as a powerful tool to facilitate surgeon skill evaluation,
improve the efficiency of documenting surgical reports and
automatically index the surgical video databases [11]. More
importantly, our approach can cope with the recognition task
online. The quick processing speed (0.1s per frame) can
help to develop live context-aware surgical assistance system,
including staff scheduling, surgical process monitoring and so
on. Note that such online action recognition systems are highly
demanded and will be the key component of the operating
rooms in the future [47]. As the proposed SV-RCNet is a
data-driven approach and utilizes almost no domain-specific
knowledge, it is general for various surgical videos though
we take cholecystectomy as an example in our study. In
addition, most of other types of surgeries have the prior
phase order information as well, such as cataract surgery,
pituitary surgery as well as robotic surgery [6], [48], [49].
In this regard, our entire framework, including PKI strategy,
can also be extended to recognize the workflow of other types
of surgical videos. We believe the proposed SV-RCNet and
PKI can find many applications in the field of medical video
analysis and inspire more and further investigations on how
to effectively analyze medical videos based on deep learning
techniques.

V. CONCLUSION

We present a novel and effective recurrent convolutional
network, i.e. SV-RCNet, to automatically recognize workflow
from surgical videos. We exploit a deep ResNet and a LSTM
network the extract visual features and temporal dependencies.
Compared with previous methods based on either hand-crafted
engineering or traditional CNNs, the deep ResNet is capable of
extracting more discriminative visual features. We integrate the
ResNet and the LSTM network into the SV-RCNet and train it
in an end-to-end manner so that the visual representations and
sequential dynamics can be jointly and effectively optimized
in the training process. The generated high quality spatio-
temporal features from the SV-RCNet can more accurately
recognize the frames of difference phases and, in particular,
the transition frames between phases. However, it is a difficult
task for the features learned from traditional CNNs due to
the lack of temporal information and other separately trained
CNN-LSTM architectures because of no implicit interplay
between the visual and temporal features. Thanks to the
comprehension of natural characteristic of surgical videos,
we further propose an inference scheme, i.e. the PKI, which
leverages prior knowledge to further improve the recognition
performance. Extensive experiments on the dataset of M2CAI
Workflow Challenge demonstrate the superior performance
of our method, surpassing all the other participants by a
significant margin. Our approach has also outperformed state-
of-the-art methods on the Cholec80 dataset, further verifying
the effectiveness of our surgical video recognition framework.
The proposed SV-RCNet is inherently general and can be
utilized in other medical video analysis tasks.
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